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Frank-Kamenetskii has discussed a steady-state formulation of ther-
mal explosions [1]. Bostandzhiyan et al. [2] and Bostandzhiyan and
Chernyaeva [3] have shown, for the flow in a cylindrical tube of New-
tonian and non-Newtonian liquids having a strong (nonlinear)tempera-
ture dependence of the viscosity, that a phenomenon analogous to ther-
mal explosion may occur during the flow of a chemically inert liquid.
Bostandzhiyan et al. [4] have also studied Couette flow and the flow
between two rotating circular cylinders of a Newtonian liquid having
the same temperature dependence for its viscosity. It was shown that,
although the heat balance equation reduces to the equations of the
steady-state theory of thermal explosion for the corresponding region,
hydrodynamic thermal "explosion” was not observed in these cases.
This phenomenon was found to be characteristic of only pressurized
flows.

Below, we study thermal explosions during the Poiseuille flow of a
viscous, chemically reactive liquid in an infinite circular cylindrical
tube, and during the motion of the liquid between infinite rotating
cylinders. The combined effect of chemical and mechanical heat -
cources are considered,

1. Flow in an infinite circular tube, We consider the
axisymmetric laminar flow of a reactive, viscous, and
incompressible liquid in an infinite circular tube of
radius ry on whose surface a constant temperature T,
is maintained. The flow occurs under the influence of
a constant pressure gradient; the liquid density is con-
stant; the reaction is of zeroth order. We assume that
the dynamical viscosity has an exponential temperature
dependence:

w (T) = p, exp U/RT, (1.1)

where uy and U are constants, R is the gas constant,
and T is the absolute temperature.

The transient system of equations of motion and the
heat balance equation can be written, with an account
of energy dissipation and heat evolution from the chemi-
cal reaction, as
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Here v is the velocity, p is the density, and A isthe thermal
thermal conductivity of the liquid; J is the mechanical
equivalent of heat; Q is the reaction energy; k, is the
preexponential factor; and E is the activation energy.
We assume that the liquid temperature is initially
equal to the temperature of the tube walls and that the
velocity profile corresponds to isothermal flow, that is
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System (1.2) must be solved with the initial condi-
tions (1.3) and the boundary conditions

v=0, T'=T, for r=r,
a oT
5=0, 5==0 for r=0. (1.4)

Converting (1.2)—(1.4) to dimensionless form, we find
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are dimensionless parameters.

The parameter w characterizes the heat-evolution
rate due to internal friction, and differs from the anal-
ogous parameter w of [2] by the constant factor (w; =
=4n/a); 6 is the Frank-Kamenetskii parameter, found
from thermal-explosion theory [1]; P is the Prandtl
number; B is a dimensionless parameter,usually small;
and « is the ratio of the activation energy for viscous
flow to that of the chemical reaction.

When P > 1, the hydrodynamic-relaxation time is
much smaller than the thermal-relaxation time, so,
from the hydrodynamical point of view, the process is
quasi-steady-state; that is, the time required for a
steady state to be established is governed by the heat-
conduction equation. The velocity profile is rapidly
levelled off as the temperature changes. Curves show-
ing the establishment of a steady-state temperature
for various P values will be given below.

Strictly speaking, we should choose a quiescent state rather than an
established velocity profile for the initial condition (1.6). However, it
should be noted that the initial velocity distribution can have an effect
only during the induction period; it will not affect such characteristics
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of the thermal explosion as the critical condition or the preexplosion
heating. When, however, P > 1 (the case for which calculations are
carried out here), the induction period is much longer than the hydro-
dynamic-relaxation time, so the initial velocity distribution does not
play a significant role. Under these conditions, an established velocity
profile may be adopted as the initial condition.

For a quasi-steady-state process, we may set
dw/87 = 0. Integrating the first equation in system (1.5)
and using the boundary condition at the tube axis, we
find
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Using (1.7), we can eliminate the velocity gradient
from the second equation in system (1.5):
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Thus, the heat balance equation can be integrated
separately from the hydrodynamical equation. The
temperature profile is found from Eq. (1.8) with the
initial and boundary conditions (1.6). After determining
6, we find the velocity profile from (1.7).

If we set %; = 0 in Eq. (1.8) (corresponding to no
mechanical heat sources), we find the problem of ther-
mal explosion in a cylindrical region. The critical
value 6, of the Frank-Kamenetskii parameter, the
maxunum preexploswn heating 6., and the adiabatic
induction period T (7 = &7) are known to depend slightly
on B. The followmg approximate equations have been
found for these quantities [6,7]:

8, B) =6, (1 +P) 0, B)=0, (1 +2p),
T (B) =~ 1, (1 + 2B). (1.9)

The factors inparentheses denote the values of the cor-
respondmg quantities at 3 =0 (5, = 2, 6, = 1.38, and

= 1—see [1]).
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Setting 6 = 0 in Eq. (1.8) (that is, for no chemical
heat sources), we find the problem of the hydrodynamic
thermal "explosion" [2]. Taking into account the differ-
ence between the dimensionless temperatures of this
study and of [2], we find the following approximations
for the critical parameter , and the maximum preex-
plosion heating for ahydrodynamicthermal "explosion":

ul*z§<1 +8) e 138(1 + 28)

(1.10)

When the two types of heat sources act jointly inthe
critical region, there is a functional relationship be~
tween 6 and ®,. Itfollowsthat curves plotted as depend-
ences of 6 on an; for various a values will begin at the
point &, (8) on the axis of ordinates and will end at the
point of on,, on the axis of abscissas. These curves
separate the 6 and «; ranges in which steady-statetem-
perature and velocity fields are set up from those in
which thermal explosion occurs.

The explicit dependence of  on ®; cannot be found,
since no analytic solution is known for Eq. (1.8), even
for B =0.

Equation (1.8) was integrated numerically on a computer. Aill the
calculations were carried out for 8 = 0.03. Figure 1 shows the §, =
=f (o w,) dependence for o = 1, 0.5, 0.2. The region bounded by the
coordinate axes and the curve is that in which the steady-state tem-
perature and velocity fields are set up smoothly. If the point with co-
ordinates § and oy is outside this region, thesteadystate isnot attained,
and there is a thermal explosion.

Figure 2 shows for the same o values the dependences of the maxi-
mum preexplosion heating on ax,;. Since thermal explosion occurs
when ®; = 0 without mechanical heat sources, and Eq. (1.8) does not
contain «, all the curves begin at the same point, given approximately
by Eq. (1.9). The ends of the curves correspond to the case of a hydro-
namic-thermal "explosion”; here the maximum "preexplosion” heating
is given approximately by Eq. (1.10). For o = 1, the preexplosion
heating remains almost constant; for « < 1, it increases, reaching its
greatest value at 6 = 0.

Figures 3-5 show the dependences of the induction period on the
parameters %y, 6, and %,/8, calculated for a = 0.5. Figure 3 shows the
dependence of the induction period on the parameter ) found for vari-
ous values of the Frank-Kamenetskii parameter. The first curve was
found for the case of a hydrodynamic thermal explosion; the third curve
was found for the case of a thermal explosion without mechanical heat
sources. For 0 < § < 2,07, the induction period increases without bound
as %) approaches the critical value. For § > 2.07, the induction period
is bounded for all values of ®y, and at large values of &, it dependsvery
slightly on ®; (an adiabatic thermal explosion occurs).

Figure 4 shows the analogous dependences of the induction period on
the parameter 6, found for five values of the parameter %;. The first
curve shows the dependence of T on § during a chemical thermal ex-
plosion; the third curve shows the dependence for a hydrodynamic ther-
mal "explosion; the third curve shows the dependence for ahydrodynamic
thermal "explosion. "

Fig. 3
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Figure 5 shows, in a semilogarithmic plot, the dependences of the
inductionperiod 7' = &7 on the ratiow;/s for five values of §. The di-
mensionless time 7' differs from ¢ by the scale factor 5. As w ap-
proaches the critical value for 0 < § < 2.07, ' increases without bound.
When § > 2.07, 7' is bounded for all ®, values; it falls off with in-
creasing §, and, at small %;, tends toward the adiabatic induction
period given approximately by Eq. (1.9). Figure 5 shows that the § = 5
and § = 10 curves characterize an adiabatic thermal explosion. At
small ny/6 values such that the effects of the mechanical heat sources
are negligible, the induction periods tend toward a constant value. As
% increases, the contribution of mechanical heat sources increases,
and the induction period decreases.

We briefly consider the applicability of the quasi-steady-state
equation (1.8). For determining such characteristics of a thermal ex-
plosion as the critical condition and the preexplosion heating, Eq. (1.8)
is valid for all values of the Prandtl number—both large and small. In
fact, the critical values of the parameters are found from the condition
for the absence of a steady-state solution of system (1.5), and the
steady-state solutions of this system and of the quasi-steady-state equa-
tion (1.8) are the same. The Prandtl number has an effect on the tem-
poral characteristics of the thermal explosion, i.e., on the induction
period and the time before steady state is reached. From Eqs. (1.5)and
(1.8), we see that the difference between the temperature profiles
found from the non-steady-state solution of the equations and from the
quasi-steady-state equation decreases with decreasing x4, and disap-
pears at ny = 0. The greatest difference between the solutions of system
(1.5) and Eq. (1.8) for a given P is found at § = 0 and for maximum =,,
i.e., during a hydrodynamic thermal explosion. Special calculations
were made on the basis of system (1.5) and the quasi-steady-state equa-
tion (1.8) for § = 0, & = 0.5, 8= 0.03, and four values of the Prandtl
number (P =1, 10, 100, and 1000) to evaluate the effect of the latter
on the critical conditions and the time required to reach steady state.
As expected, the critical value %y, = 17.15 and the maximum preex-
plosion heating 6, = 3.16 were independent of P and were the same as
the values given by the quasi-steady-state equation. Time dependences
of the temperature at the cylinder axis were plotted near critical condi~
tions, below the explosion limit, for » = 17 (Fig. 6). Curve 1 was
plotted for P = 1, and curve 2 for P = 10. The curves for P = 100 and
1000 essentially coincide with that found from the quasi-steady-state
equation (curve 3). Figure 6 shows that, even at P = 10, the quasi-
steady-state equation gives a solution differing little from the non-
steady-state solution,

2. Flow between two rotating cylinders, We assume
aviscous, chemically reactive liquid between two infinite
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coaxial cylinders. The inner cylinder is fixed, and the
outer is rotating at a constant angular velocity w;. The
radii and temperatures of the cylinders are ry, ry, Ty,
and T,. The temperature dependence of the viscosity is
given by Eq. (1.1).

The system of equations of motion and the heat bal-
ance equation can be written, with account for energy
dissipation and the chemical reaction, as
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where w is the angular rotation velocity of the liquid
particles; the rest of the notation is the same as in
Section 1.

We assume the liquid temperature is initially equal
to that of the outer cylinder, and that the angular-ve-
locity profile corresponds to isothermal flow; i.e. [5],

T(r)=T,,
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System (2.1) must be solved with the initial condi-
tions (2.2) and the boundary conditions

0o=0, T=T forr=n,
©0=0ay, T =7 forr=r. (2.3)
Converting (2.1)—(2.3) to dimensionless form, we find
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0()=0, Q) =ﬁ(1_ Z—Z) for ©=0,
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Q=0 forz=d,

Q=1 forz=1. (2.5)

Here
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The rest of the notation for the dimensionless vari-
ables and parameters is the same as in Section 1.

If both cylinders are fixed (x = 0), the second equation in system
(2.4) governs the thermal explosion of the liquid at rest between the
cylinders. In this case, the critical value of the Frank-Kamenetskii
parameter will depend on the ratio of radii and on 6;. If no chemical
reaction is occurring (§ = 0), system (2.4) has a steady-state solution
for any » (as was mentioned above), and the maximum temperature
will be a monotonic function of ®. Since the dissipative heating in-
creases monotonically with increasing %, then, no matter how small §
is, there is some sufficiently large % which will lead to a thermal ex-
plosion, Accordingly, the §(n) dependences will asymptotically approach
the axis of abscissas for any o.

The 8(») dependences were calculated for the following parameter
values: 8= 0,03; d =0.5;6,=0; and a =1, 0.5, and 0.2. The cor-
responding curves are shown in Fig. 7. At x =0, the mass at rest be-
tween fixed cylinders will undergo a thermal explosion; here §, = 14.32.
The curves begin at this point at - » and asymptotically approach the

axis of abscissas with increasing ». The preexplosion heating increases
monotonically with increasing %.
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